
An Ad-hoc graph node vector embedding algorithm for general knowledge
graphs using Kinetica-Graph †

B. Kaan Karamete∗, Eli Glaser

Kinetica DB Inc.
901 North Glebe Road, Arlington, Virginia 22203

Abstract

This paper discusses how to generate general graph node embeddings from knowledge graph represen-
tations. The embedded space is composed of a number of sub-features to mimic both local affinity and
remote structural relevance. These sub-feature dimensions are defined by several indicators that we spec-
ulate to catch nodal similarities, such as hop-based topological patterns, the number of overlapping labels,
the transitional probabilities (markov-chain probabilities), and the cluster indices computed by our recursive
spectral bisection (RSB) algorithm. These measures are flattened over the one dimensional vector space into
their respective sub-component ranges such that the entire set of vector similarity functions could be used
for finding similar nodes. The error is defined by the sum of pairwise square differences across a randomly
selected sample of graph nodes between the assumed embeddings and the ground truth estimates as our
novel loss function defined by Equation 3. The ground truth is estimated to be a combination of pairwise
Jaccard similarity and the number of overlapping labels. Finally, we demonstrate a multi-variate stochastic
gradient descent (SGD) algorithm to compute the weighing factors among sub-vector spaces to minimize
the average error using a random sampling logic.

Keywords: Knowledge graphs, graph embedding, vector similarity

1. Introduction

There is not a definitive way to represent fixed di-
mension vector node embed-dings from variable di-
mension general knowledge graph connections (re-
lations as edges). The simple reasoning is that
there is really no rule in a general graph connection
sense. Nevertheless, in the last decade, researchers
have been pushing the envelope to apply the success
of vector embedding advancements in Large Lan-
guage Models (LLM) over to the general context
knowledge graphs. A number of novel algorithms,
namely, node2vec and word2vec [1, 2] devised with
lots of success in language semantics and undoubt-
edly opened doors for today’s many AI applications
that seem to be championed as the master key so-
lution for most of our engineering problems, if not

∗Corresponding author: Bilge Kaan Karamete,
kkaramete@kinetica.com, karametebkaan@gmail.com
†Kinetica-Graph: https://arxiv.org/abs/2201.02136

all (exclusions are mostly in multi constraint opti-
mization problems, such as supply chain logistics
and optimal fleet routes). Though, possibly a more
humble acceptance of LLM’s superiority is when
there is supposedly a hidden pattern among word
pairings that can be put in a neural net machinery
to minimize the error between the assumed solution
and the known ground truth based on either some
training data (supervised) or a logic of differentia-
tion (unsupervised/reinforced) [3].

However different in its details of minimizing er-
rors to create these sophisticated language models
that would produce intended outcomes, its supe-
riority mainly lies in the deterministic nature of
the input and the output with the additions of
some fuzziness so that near-reality outcomes could
be achieved [4, 5]. In a general knowledge graph
sense, however, there is no language ruling for how
a node ‘Tom’ is connected to ‘Bill’ or ‘Jane’ or to the
country of his/her birth place, certainly none better
than mere connections as node to node ‘relation’s.

ar
X

iv
:2

40
7.

15
90

6v
3 

 [
cs

.L
G

] 
 2

 J
an

 2
02

5



It is always possible however, the problem can be
cast into a language model by connecting these gen-
eral nodal relations around building sentences and
paragraphs. These embeddings are broadly gener-
alized into ‘translational’ and ‘semantic’ categories
and extensively surveyed in [6, 7] where the former
is distance based and the latter is relation centric.

The intention of this paper is not to find this
mapping from unstructured knowledge graphs to
language graph models so we could apply the cel-
ebrated node2vec method to create nodal embed-
dings for similarity analysis. Our goal, however,
is to create an ad-hoc mapping framework that is
based on each graph’s own analytics and using as
much machinery as possible from LLM technology
to mimic similarities between the node pairs and
combine ‘translational’ and ‘semantic’ mappings to-
gether. Perhaps, one could rephrase that a graph is
its own AI model where its connections reveal the
unstructured information in its most true form and
any other representation is just an approximation
at best.

In this spirit, we try to come up with a vector em-
bedding in which we use a number of graph pred-
icates, such as topological hop-patterns, common
labels, transitional probabilities via Markov-chain
(MC) probabilities, and clustering indices via the
recursive spectral bisection (RSB) solver [8] using
Kinetica-Graph [9, 10, 11, 12]. We would refer these
as sub-features and explain each group in Section 2
in detail. We then describe a flattening procedure
to spread these sub-feature predicates onto the sub-
ranges of the vector embedding space in Section 3.
A novel loss function definition is described in Sec-
tion 4 where an average embedding error is assumed
to be the sum of square differences between the in-
ner product of nodal vector pairings and pairwise
sum of Jaccard scores combined with pairwise com-
mon labels. Finally, we will show a stochastic gra-
dient descent (SGD) algorithm [13] that minimizes
this average error by adjusting the weights among
sub-feature groups in the embedded space in Sec-
tion 5.

2. Sub-vector features

The vector space is divided into sub-group range
of indices that are indicative of ad-hoc graph pred-
icates as shown in Figure 1. This is crucial since
a value at an index location would have a specific
meaning for every node and a share in similarity

score when it is inner product-ed with that of an-
other node. These predicates are specifically chosen
to capture the local and remote affinities. The fol-
lowing predicates are chosen per graph node:

- Hop-patterns

- Label index associations

- Cluster index

- Transitional probability

These predicates are explained in detail below.

2.1. hop-patterns

The first feature predicate encompasses a range
of indices to depict hop based pattern numbers as
shown in Figure 2. Hop pattern of a node is defined
by the number of forks and the number of nodes
in each fork arm as shown with the respective col-
ors per hop; e.g., second hop depicted as cyan has
two forks with two nodes at each fork arm. This is
not full-fledged topological pattern matching, since
that would require the node indices instead of the
number of nodes at breadth-first search (bfs) adja-
cency traversal. The reason why we can not use the
node indices in the vector is that it does not have
a meaning as a value subject to inner product. If
we can find a better means to universally reflect
node indices in vector embeddings, this sub-feature
could be replaced with much accurate values, but
for now, we’ll be using this light weight topologi-
cal feature. Maximum number of hops is added as
an option to the embedding algorithm as the set of
pattern based numbers can slide within the array
based on this option.

2.2. Label indices

We have devised in [10] an efficient mechanism
to attach multiple labels to nodes and edges. The
labels are stored with their unique indexes in the
graph db. This feature has as many sub-range in-
dices in the vector as there are unique labels in the
graph (that has node-associations). The idea as
similar to hop patterns is for these array indexes to
have an absolute meaning throughout the nodes,
i.e., if a label index is common to a number of
nodes, the specific array index for that label should
be turned on for all those nodes that share the same
label. The label indices are depicted in Figure 1 as
k,m, n, p for each sub-feature, respectively.

2



Figure 1: The layout of the sub-features within the vector embedding space; The sub-features, s0..3,k..p per node are hop based
topology pattern, associated labels, the cluster index computed using the recursive spectral bisection (RSB) algorithm and the
transitional probabilities (markov chain solver), respectively. The k,m, n, p are vector ranges per each sub-feature. Four weight
factors, w0..3 that will be used to minimize the average total loss per node are eventually multiplied with each value within
the sub-range of its respective feature s0..3 for the final embedded vector content per graph node.

Figure 2: Hop pattern of a node is defined by the number
of forks and the number of nodes in each fork arm as shown
with the respective colors per hop; e.g., second hop depicted
as cyan has two forks with two nodes at each fork arm as
shown in the array below.

To illustrate label associations and indices, the
generation of a simple wiki-graph is depicted with
the SQL syntax of Kinetica-Graph’s restful API in
Figure 3. Node labels are listed in the response
of the create-graph call in Figure 5 as a DB table.
A 3D visualization of the graph with nodal label
associations are also shown in Figure 4.

2.3. Cluster indices

A recursive spectral bisection algorithm is used
to compute the cluster indexes of graph nodes. The
idea in this Kinetica-Graph implementation is in-
spired from [8] where the sorted second smallest
eigenvector of the graph Laplacian is used in bisect-
ing at the median location at each recursive split as
depicted in Algorithm 6. The choice of partitioning
for the endpoint match/graph with ‘spectral’ option

Figure 3: Graph-SQL syntax for Kinetica-Graph’s cre-
ate/graph Restful API. The nodes and edges components
are depicted explicitly, i.e., with constants instead of read-
ing from table columns (unless the example is simple the
usual way is to list the nodes/edges in a DB table or stream
in). Bottom is showing the chess graph ontology using the
label keys; all edges (100%) are in between Gender and In-
terest labeled nodes via Relation group edge label key.

Figure 4: 3D visualization of the graph generated by tha call
in Figure3 with node/edge label associations using d3’s force
layout

3



Figure 5: The response of Kinetica-Graph’s create/graph
call depicting node-label associations as a relational DB ta-
ble. E.g.: Alex and Tom has two common labels, namely,
chess and MALE.

is particularly preferred for its speed of execution
and low resource allocation requirement compared
to the Louvain clustering [14] (another option in
the solver) as shown in the Figure 8. A geometri-
cal example of the RSB method with three levels of
bisections can be seen in Figure 7.
The cluster index per node is pushed into the re-

spective sub-range allocated for this feature. The
width of this feature over the vector space can be
scaled by overriding the default value of 8 via the
maximum number of clusters option to the embed-
ding solver. The output of the RSB clustering is
shown as a DB table in Figure 9.

2.4. Transitional Probabilities

Inspired from the Pagerank algorithm [15], our
novel probability ranking solver uses the same equa-
tion depicted in 1 with a modified transition proba-
bility flux pij where it is computed to be the ratio of
incoming adjacent edge weights (connecting nodes i
and j) within the immediate neighbor B(i) to each
node i. These nodal scalar pi values are iterated
at each traversal loop converging to a steady state
where the maximal change in pi is less than a small
threshold. The ranking factor r is assumed to be
0.15 so that every node will have a small amount
of uniform probability (r divided by the number of
graph nodes NV ) to account particularly for nodes
with no incoming edges.

pi = (1− r)
∑

j∈B(i)

pij +
r

NV
(1)

These transitional probabilities are scaled be-
tween zero and one and the sub-range for this fea-
ture over the vector is allocated to a preset division.
For example, if a particular node’s probability is

0.25, with the default range of ten, the third index
within the sub-vector range is turned on. It is also
worth mentioning that this solver behaves exactly
like a Pagerank solver for the uniform identical edge
weights scenario where the transitional probability
defined above simply becomes the incoming valence
rank.

3. Flattening

Hop-pattern numbers are per each fork of a hop.
Therefore, primary flattening occurs in mapping
this two dimensional information over the one di-
mensional vector space. Furthermore, a secondary
flattening happens for laying the sub-feature’s own
indexing after the previous feature’s flattened in-
dex location. Label and cluster indices do not re-
quire flattening but their respective vector loca-
tions have to be shifted after the prior feature’s
index range. Transitional probability, however,
would require to map the continuous scalar prob-
ability values to be bucketed over a preset num-
ber of interval indices. This is easily accomplished
by partitioning the unit range equally over a pre-
set number of intervals (can be modified by the
user). The vector size formula is given in Equa-
tion 2 where each sub-feature’s respective ranges
are summed. The parameters max num clusters,
max hops are user driven and max forks perhop,
max edges perfork are set implicitly to minimize the
number of pattern indices within the overall vector
dimension.

V ector size = max patterns +

max labels +

max num clusters +

num probabilities

where

max patterns = max hops ×
max forks perhop ×
max edges perfork (2)

Before the normalization process, these vector
values within each sub-feature are multiplied by
a feature specific weight parameter. We can ex-
tend the number of sub-features in our embed-
ding framework, however, at the time of writing
this manuscript, we are currently having four sub-
features, hence, we have only four weight parame-
ters that we will use for the purpose of finding out

4



Figure 6: Steps of Recursive Spectral Bisection (RSB) Algorithm

which of these sub-features are intrinsically more
dominant over each other for the specific graph in
contention using an equal error distribution and
minimization procedure that will be explained in
Section 4 and 5.

Having multiplied by their respective weights,
the vectors are then normalized so that their inner
products can be used for vector similarity analysis.
The unit vector embedding values for the node pair
‘Bill’ and ‘Susan’ for the simple wiki-graph is shown
in Figure 1.

3.1. Quantizing

Straightforward mapping of the float predicates
over the vector indices will only provide inner prod-
ucts for those whose predicates fall onto the exact
vector index. However, this is not realistic since
the integer index equivalent for a float value corre-
sponding to a pagerank or distance (extended ver-
sion of the embedding solver includes distances)
score is too restrictive and would certainly miss
close but off-the-index values in similarity (inner-
product) computations. For instance, a value of
5.4 should not just turn on the 5th index (in a 10
slot sub-range dedicated for the predicate) but the
nearby indices based on its deviation from the exact
index, in a hat-like diffusing behavior. Hence, we
have developed a quantizing logic to diffuse these
values over a range of nearby indices as shown in
Figure 12 where in the particular example not only
the 5th but the nearby 4th, 6th and 7th indices had
the effect of dispersion based on the deviations of
these indices from the exact value in a piece-wise
fashion. Quantizing is a key concept that helps in-
crease the chance of capturing potential similarities
among the node embeddings.

4. Loss Function

The concept of assuming the total error dis-
tributed evenly across the nodal pairs is inspired
from the computational mechanics field [16], specif-
ically in finite element analysis defined as z-square
where the elemental errors are aggregated over the
entire domain and then divided equally over the fi-
nite elements. Similarly, in our sub-feature weight
optimization, we can define the total error as the
aggregated sum of the differences between the in-
ner product of each node against every other in
a subset of the graph and the ground truth esti-
mates for each pair. Specifically, the error is defined
by the sum of pairwise square differences across a
randomly selected sample of graph nodes between
the assumed embeddings and the ground truth es-
timates as our novel loss function defined by Equa-
tion 3. The ground truth is estimated to be a
combination of pairwise Jaccard similarity and the
number of overlapping labels.

Loss function is defined per node i such that the
goal is to find the average difference aggregated over
all the pairs from the node i to all other nk num-
ber of nodes. The similarity, i.e., the inner product
between the vector embeddings of fi and fk is sub-
tracted from the pairwise sum of Jaccard similarity
score and the number of overlapping labels between
the pairs as our revised ground truth estimate as
shown in Equation 3(a). The α value is chosen to
be 0.5 which is the mean of the two measures. The
pairwise-error functions is made L2 norm so that
the derivative of the loss function with respect to
the four weight parameters would have the truth es-
timate terms for the optimization algorithm. The
vector embedding fi or fk is a function of wj ’s. The
problem is then reduced to applying the minimiza-
tion procedure to the average of the total sum of
the nodal losses across the sub-graph as shown in

5



Lossi =
1

nk

nk∑
k

∥∥∥∥< fi, fk > −
(
α jac(i, k) + (1− α)

labels(i) ∩ labels(k)∑
k distinct(labels(k))

)∥∥∥∥
2

(3a)

< fi, fk > = wi
rw

k
rs

i
rjs

k
rj (3b)

wj ← min

(∑
i(Lossi)

NV

)
∀j | j = 1..4 (3c)

the Equation 3(c).
The selection of the sub-graph is done randomly

such that we only grab equal number of graph nodes
as batches within each cluster index (computed at
the sub-feature creation) so that the random set is
representative enough of the entire graph behavior.
The total number of the random sampling process
is a user defined parameter and usually much less
than the original graph size to minimize the overall
computational time.
Finally, by using this random sampling logic a

multi-variate stochastic gradient descent (SGD) al-
gorithm is devised to compute the weighing fac-
tors in minimizing the average nodal error of Equa-
tion 3(c) in Section 5.

5. Stochastic Gradient Descent

The sum of pairwise differences between the inner
product of pairs for node i, node k and the ad-hoc
ground truth from Jaccard scores with overlapping
label count ratio as depicted in Equation 3(a) is
dependent on the unknown terms wj as the weight
factor of each four sub-features. The selection of
the set of graph nodes where each node is paired
with every other in the set is important in finding
these optimal weights. The process needs to include
nodes to have a good representation of the entire
graph behavior. We have opted to sample this set
randomly (stochastic) with a caveat of picking the
batch of nodes from each cluster index group where
we have already computed in constructing the sub-
features. The number of nodes in this random se-
lection process is user specified, however, it needs
to be much less than the original graph size so that
the SGD iterations would not be prohibitive.
The next step is taking the derivative of the nodal

average of the loss per each of these weight param-

eters and move against the direction of the gradient
of each weight to minimize the loss. The incremen-
tal update on each unknown weigth is immediately
made to reflect its impact on the next unknown
weight variable computation as shown in Equa-

tion 4 and 6 in which w
(k+1)
j is the next (k + 1)th

iteration on the jth weight parameter. This ap-
proach is not a guaranteed outcome in accelerat-
ing the convergence. Other alternative approaches
such as batching or mini-batching discussed exten-
sively in [13] might provide better computational
outcome. However, we think this is beyond the
scope of this study and our findings are satisfac-
tory computationally for the cases we have tried
so far. The iterations are continued if the relative
incremental iteration delta of all unknown weights
go below a preset user threshold (default value is
0.001) or the number of epoch iterations reaches
the upper limit (default is 100) which is also a user
prescribed parameter of the solver as shown in Fig-
ure 13. The convergence history plot between the
number of iterations and the error is also shown in
Figure 14 for the knowledge graphs of varying sizes
from a few hundred to 100 million nodes. The trend
in all cases is with early unstable fluctuations and
rapid descending to the optimal as expected. The
initial weight values and the rate of iteration, also
known as training or learning rate, namely, β as
shown in Equation 4, can both also be overridden
by the user.

w
(k+1)
j ← wk

j − β

∂
∑
i

(Lossi) / NV

∂wj

∣∣∣∣∣∣
k

(4)

6



Figure 7: The application of the RSB algorithm over the
mesh graph of the continental USA. The three levels of bi-
section creates 8 (default number of clusters) clusters from
top to bottom, respectively.

Figure 8: The Graph-SQL syntax of match/graph restful
API to generate clusters using RSB method. Another option
is the Louvain clustering with more resource requirements.

Figure 9: The output of the RSB clustering - the cluster
indexes per node as a DB table for the simple wiki-graph
example

Figure 10: The results of the probability ranking solver per
node as a DB table - the probabilities are scaled between a
zero (small value) and one, with the sum equal to one.

Figure 11: Graph-SQL syntax in table function form
of Kinetica-Graph’s solve/graph restful API with uniform
weights of 1. Equal weight distribution of the solver mimics
the Pagerank results.

7



Figure 12: Quantizing: piece-wise dispersion of the float value of 5.4 for the pagerank score to a number of nearby vector
indexes based on the deviations from the exact value. Spread of nodal values mapped between zero and one using a sigmoid is
followed by the quantizing step that increase the chance of capturing more similarities among node embeddings.

Figure 13: Graph-SQL syntax of Kinetica-Graph’s
match/graph restful API with the embedding solver and op-
tions that shifts the sub-ranges of the features in the embed-
ded vector space. If the optional SAMPLE POINTS com-
ponent is not commented, the solver would output only the
pairs specified via the component’s combo two-tuple identi-
fiers.

Ki,m =< fi, fm > −
(
α jac(i,m)+ (5)

(1− α)
labels(i) ∩ labels(m)∑
m distinct(labels(m))

)

∂
∑
i

(Lossi)

∂wj
= 4

∑
i

∑
m

(Ki,mwjs
i
js

m
j ) (6)

6. Discussion and Conclusions

We have tried to map unlimited dimen-
sion general knowledge graph topology onto a
1−dimensional vector embeddings by constructing
the vector space from features that we think would
best resemble local affinity and remote structure
so that any vector similarity (inner product) be-
tween a node pair would result in the same sim-
ilarity behavior if we had computed the Jaccard
score with the number of common labels between
the two nodes of every pair. To this end, the sub-
features are chosen to be the predicates of hop-
pattern numbers, cluster indices (computed by the
recursive spectral bisection (RSB)), associated la-
bel indices, and the transitional probability (or the
Pagerank score if weights are uniform) as explained
in Section 2 above. The impact of the vector com-
ponent sub-features on the similarity can be found
by adding a weight parameter to multiply each of

8



Figure 14: Stochastic Gradient Descent Convergence

the sub-feature elements within the respective vec-
tor sub-range and test the result against an es-
timated ground truth as explained in Section 4.
We have formulated the difference between the in-
ner product of the assumed embeddings and the
combined common-labels and Jaccard score as the
ground truth, as our ad-hoc Loss function as shown
in Equation 3. We then tried to optimize the nodal
average of the total loss by applying a stochastic
gradient descent (SGD) algorithm to find the un-
known weights so that this total average loss is min-
imized as explained in Section 5 and Equations 4
and 6.

Stochastic process is the selection of the random
nodes that will be used in SGD to find the unknown
weights. We have chosen these random nodes from
each graph cluster in equally numbers. We use this
smaller sub-set of nodes in computing the unknown
weights. The assumption of picking this narrow set
of nodes from each cluster is to increase the like-
lihood of better representation of the entire graph
since SGD on the entire graph is computationally
prohibitive. SGD converges very similarly in our
testing of many graphs as shown in Figure 14. The
banking graph shown, is in 10+ million range (4+
billion case is also used), and its ontology is de-
picted in Figure 15.

The output of the embedding solver is a database
table with a vector per graph node as depicted in
Figure 16. These embedding results can be used
in any vector similarity functions; such as a co-
sine similarity as depicted in Figure 17. A com-
mon use case for vector similarity is, for instance,
in recommendation engines for various industries,
from friend recommendations in social networks to

the next likely item in your shopping chart. The
efficiency and accuracy of these embeddings, how-
ever, depends on the rich-ness of the vector sub-
features and the sophistication of the randomly se-
lected training sets in optimizing the vector con-
tents. We argue that even the best embedding algo-
rithm would be less accurate compared to the pre-
cise connections and labels depicted in the graph
topology itself. However, mapping of graphs to
vectors has a distinct advantage that they can be
applied in a standard manner using simple vector
functions in many AI modules. The alternative
of using knowledge graph analytics has almost no
standardization in many downstream AI applica-
tions provided by various graph vendors.

The stipulation of the existing four sub-features
representative of the graph topology can certainly
be mitigated by either adding more features or a
different set of predicates. One other criterion that
seems to make sense to include is the distance met-
ric as discussed in [6, 7]; which considers similarity
for nodes at an equal distance from a set source.
However, this statement implies to include all nodes
to be similar lying on the same ring-radius distance
(hop or weight distance) from the center as the
source. This is however a wrong postulate since we
know that the nodes on the same ring may be at
equal distance away from a source at the center, but
they are no-where close to each other particularly
for the nodes across each other at any section of the
ring. However, along with the cluster index as is
already a sub-feature, the combined effect (always
consider the inner-product sense) might move the
argument to a more acceptable and even preferred
state. Another area of future development is in the

9



Figure 15: Banking graph ontology with 34 edge and 16 node labels with 10 million+ nodes. The percentages show how many
actual graph edges are connected between each labels.

Figure 16: The vector embedding output table
chess embedding as the result of the Kinetica-Graph
embedding solver depicted in Figure 13.

dynamic additions to the graph, and how to up-
date graph embeddings for the new additions that
should be calculable instantly and ready for vector
analysis in order for it to be useful in real-time sim-
ulations. We are considering to eliminate recom-
puting of the embeddings for new node insertions
by caching and using the results of already com-
puted weight parameters and interpolating proba-
bility and cluster indexes from adjacent nodes in-
stead of running compute heavy cluster and proba-
bility solvers. It’ll then be up-to the user to decide
when to recompute for more accurate embedding
values, most probably to be triggered after the num-
ber of updates reaching to a significant threshold.

Notes on Contributors

Bilge Kaan Karamete is the lead technologist for the
Geospatial and Graph efforts at Kinetica. His research
interests include computational geometry/algorithm
development, unstructured mesh generation, parallel
graph solvers. He holds PhD in Engineering Sciences

Figure 17: The Kinetica-SQL statement using a cross join to
run the vector similarity analysis between node embeddings
of each node pair from the result table, chess embedding of
the embeddding Kinetica-Graph solver.

from the Middle East Technical University, Ankara
Turkey, and post doctorate in Computational Sciences
from Rensselaer Polytechnic Institute, Troy New York.

Eli Glaser is VP of Engineering at Kinetica. He leads
the development teams concentrating in data analytics,
query capability and performance. Eli holds Master’s
in Electrical Engineering from The Johns Hopkins Uni-
versity, Baltimore Maryland.

7. Software avaliability

Kinetica and Kinetica-Graph is freely
available in Kinetica’s Developer Edition at
https://www.kinetica.com/try that the use
cases depicted in this manuscript can easily be
replicated by the readers.

References

[1] A. Grover, J. Leskovec, node2vec: Scalable feature
learning for networks (2016). arXiv:1607.00653.
URL https://arxiv.org/abs/1607.00653

[2] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean,
Distributed representations of words and phrases and
their compositionality (2013). arXiv:1310.4546.
URL https://arxiv.org/abs/1310.4546

10

https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1607.00653
http://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546


[3] V. Zhou, Blog:machine learning for beginners: An in-
troduction to neural networks, https://victorzhou.

com/blog/intro-to-neural-networks, accessed: 2024-
07-12.

[4] L. Huang, P. Zhao, H. Chen, L. Ma, Large language
models based fuzzing techniques: A survey (2024).
arXiv:2402.00350.
URL https://arxiv.org/abs/2402.00350

[5] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar,
M. Usman, N. Akhtar, N. Barnes, A. Mian, A com-
prehensive overview of large language models (2024).
arXiv:2307.06435.
URL https://arxiv.org/abs/2307.06435

[6] S. Choudhary, T. Luthra, A. Mittal, R. Singh, A survey
of knowledge graph embedding and their applications
(2021). arXiv:2107.07842.
URL https://arxiv.org/abs/2107.07842

[7] X. Ge, Y.-C. Wang, B. Wang, C. C. J. Kuo, Knowledge
graph embedding: An overview (2023). arXiv:2309.

12501.
URL https://arxiv.org/abs/2309.12501

[8] Y. Hu, R. J. Blake, Numerical experiences with parti-
tioning of unstructured meshes, Parallel Computing 20
(1994) 815–829.

[9] B. K. Karamete, L. Adhami, E. Glaser, A fixed storage
distributed graph database hybrid with at-scale olap
expression and i/o support of a relational db: Kinetica-
graph (2022). arXiv:2201.02136.
URL https://arxiv.org/abs/2201.02136

[10] B. K. Karamete, E. Glaser, Novel data structures for
label based queries specifically efficient for billion+
property graph networks using kinetica-graph (2023).
arXiv:2311.03631.
URL https://arxiv.org/abs/2311.03631

[11] B. K. Karamete, E. Glaser, Optimal routing algorithm
for trips involving thousands of ev-charging stations us-
ing kinetica-graph (2022). arXiv:2206.06241.
URL https://arxiv.org/abs/2206.06241

[12] B. K. Karamete, L. Adhami, E. Glaser, An adaptive
markov chain algorithm applied over map-matching of
vehicle trip gps data, Geo-spatial Information Science
24 (3) (2021) 484–497.
URL https://doi.org/10.1080/10095020.2020.

1866956

[13] S. Ruder, An overview of gradient descent optimization
algorithms (2017). arXiv:1609.04747.
URL https://arxiv.org/abs/1609.04747

[14] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefeb-
vre, Fast unfolding of communities in large networks,
Journal of Statistical Mechanics: Theory and Ex-
periment 2008 (10) (2008) P10008. doi:10.1088/

1742-5468/2008/10/p10008.
[15] L. Page, S. Brin, R. Motwani, T. Winograd, The

pagerank citation ranking : Bringing order to the web,
in: The Web Conference, 1999.
URL https://api.semanticscholar.org/CorpusID:

1508503

[16] O. C. Zienkiewicz, J. Z. Zhu, The superconvergent
patch recovery and a posteriori error estimates. part 1:
The recovery technique, International Journal for Nu-
merical Methods in Engineering 33 (1992) 1331–1364.
URL https://api.semanticscholar.org/CorpusID:

120762978

11

https://victorzhou.com/blog/intro-to-neural-networks
https://victorzhou.com/blog/intro-to-neural-networks
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
http://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2402.00350
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
http://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2107.07842
https://arxiv.org/abs/2107.07842
http://arxiv.org/abs/2107.07842
https://arxiv.org/abs/2107.07842
https://arxiv.org/abs/2309.12501
https://arxiv.org/abs/2309.12501
http://arxiv.org/abs/2309.12501
http://arxiv.org/abs/2309.12501
https://arxiv.org/abs/2309.12501
https://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2201.02136
http://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2201.02136
https://arxiv.org/abs/2311.03631
https://arxiv.org/abs/2311.03631
https://arxiv.org/abs/2311.03631
http://arxiv.org/abs/2311.03631
https://arxiv.org/abs/2311.03631
https://arxiv.org/abs/2206.06241
https://arxiv.org/abs/2206.06241
https://arxiv.org/abs/2206.06241
http://arxiv.org/abs/2206.06241
https://arxiv.org/abs/2206.06241
https://doi.org/10.1080/10095020.2020.1866956
https://doi.org/10.1080/10095020.2020.1866956
https://doi.org/10.1080/10095020.2020.1866956
https://doi.org/10.1080/10095020.2020.1866956
https://doi.org/10.1080/10095020.2020.1866956
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:120762978
https://api.semanticscholar.org/CorpusID:120762978
https://api.semanticscholar.org/CorpusID:120762978
https://api.semanticscholar.org/CorpusID:120762978
https://api.semanticscholar.org/CorpusID:120762978

	Introduction
	Sub-vector features
	hop-patterns
	Label indices
	Cluster indices
	Transitional Probabilities

	Flattening
	Quantizing

	Loss Function
	Stochastic Gradient Descent
	Discussion and Conclusions
	Software avaliability

